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In the development of investigations on inverse problems [1, 2], criteria for the functional controllability and invertibility of non- 
Hnear systems of equations with an output are obtained. The solution is based on the construction of an inverse system for which 
the input action of the initial system is the output. An identification problem is considered which corresponds to the problem 
of invertibility with an unknown initial state. The properties of X-invertibility and X-identifiability, which arise in cases when the 
cmtput signal is known in a set of trajectories, are investigated. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

The non-linear system of equations with an output 

Y¢ = f ( t , x , u )  (1.1) 

y = h ( t , x , u )  (1.2) 

is considered. 
Here, x e D C_ R n is. a phase vector, u e U C_ R m is the input action or the control vector, which is a 

function of time t when t ~ T = [0, tl] C_ [0, .o), and y ~ Y C R k is the output vector or the function 
being measured. It is assumed that the functions f, h and u are differentiable a sufficient number of 
times. 

The direct and inverse control problems differ depending on whether the initial action is sought from 
the need to achieve an output with the required properties or the equation which achieves it is 
determined using a specified output. The problem of functional controllability considered below, which 
i.nvolves the attainment of an arbitrary output signal (possibly, differentiable a sufficient number of 
times), is a direct problem. The problem of invertibility, which in an inverse problem, consists of finding 
the initial action using a specified output. An inverse system, for which the input action of the initial 
system is the output, and the output signal (and its derivatives) of the initial system is the input, can 
be successfully used to solve both problems. 

2. THE I N V E R S E  SYSTEM 

We will formulate the problem of finding the input action for a specified output signal of system (1.1), 
(1.2) as the output of a certain system of differential equations, the input of which would be the specified 
output and, possibly, its derivatives. This problem is assumed to be solved using the following scheme, 
which consists of several steps. We first calculate the derivatives 

y~Si)=hisi( t ,x ,u) ,  i=1  ..... k (2.1) 

which explicitly contain a parameter u. Here, derivatives of the order of $i -- 1 do not depend explicitly 
on the parameter u. Suppose that, among the functions (2.1), which are considered as functions of the 
variable u, there are kl ~< k independent functionsyl(S0 . . . . .  y~Skl), to fix our ideas, and that the remaining 
functions depend on them. On solving the equations y/Si) = " ~  (t, x,  u )  (i = 1, . . . ,  k l )  for Ul . . . .  , ukl 
(when necessary, the numbering ui can be changed) and substituting the values found into the remaining 
equations of (2.1) and system (1.1), we obtain 

t o  . (st) . (s~t) , ,  

ui =~oi~,,x,.rl ..... Yh ,"h+1 ..... urn), i=I ..... k I (2.2) 
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y~J) - ~ t. x . ,(s,) "'(~*t)" (2.3) 
- -  jsj t . ,  , .rt . . . . .  .rtl J, J = kl  + 1 . . . . .  k 

2 = f l  t ,  ~ ,,(sO ,,(ski) 
~, . . . .  Y l  . . . . .  - rk  I , U k l + l  . . . . .  Um) (2.4) 

(~0 , yk(~k~ ) treated functions of time t, that Here, in formulae (2.3) and (2.4), the functions Yl . . . .  are as 
is, t andx are the arguments of the functions Oj~ and t , x ,  u k , + l , . . . ,  Urn. are the arguments of the function 
fl. We assume that, as a result of the procedur~ for eliminating the variables u l ,  • • • ,  Uk~, the functions 
~.j~j, f l  obtained are continuously differentiable functions of their arguments a sufficient number of 
times. 

Passing to the second step, we consider system (2.4) as the initial system, for which the vector 
(Uk~+l, • • • ,  urn) is the input and the functions (2.3) are the output and we repeat  the transformations 
of the first step. The required system is obtained when, at the next step, the derivatives of the functions 
(2.3) do not contain the input variables u i. After a finite number of steps (no greater than m) we obtain 

w = t p ( t , x , y  . . . . .  y (S ) , v  ) 

(Sj)~ 
• j ( t , y  ..... y j=O, j = l  ..... 

2 = q~(t ,  x ,  y . . . . .  y ( ~ ) , v  ) 

(2.5) 

(2.6) 

(2.7) 

where u = (w, a)), w ~ W C R ~-', x) ~ V C R m+'-~ and, where necessary, the numbering of  the input 
variables can be changed. The functions @j are independent and the values of sj in formulae (2.6) are 
the minimum values for which these relations are possible. This agreement is necessary since 
differentiation of relation (2.6) with respect to t leads to a further equality with increased values of sj, 
which implies an ambiguity in determining the magnitude of ×. 

We shall call system (2.5)-(2.7) the inverse system (IS) with respect to the given system (1.1), (1.2). 
The quantity ~ is referred to as the output defect and So = max(s, Sl . . . .  , s~,) is the smoothness index 
of the output of system (1.1), (1.2). Note that the output signal and its derivatives y . . . . .  y(S) and some 
of the components of the input signal a) of the initial system is the input of  the IS and that some of the 
components of  the input signal w of the initial system are the output. Here,  unlike the initial system, 
the input action of the IS cannot be arbitrary but satisfies the differential relations (2.6). It follows from 
the above arguments that the form of the IS depends on the choice of the components  of the input 
variable of the initial system, which are the output of the IS. 

R e m a r k  1. The IS can be directly introduced by defining it as the system of equations (2.5), (2.7) which reduce 
to identities for any solution of system (1.1), (1.2) and, conversely, any solutions of system (2.5), (2.7) from the 
domain of its definition reduce Eqs (1.1) and (1.2) to identities. With such a definition, the question of the existence 
of an IS remains open. In a number of cases, the proposed scheme for constructing the IS is globally feasible. In 
a local formulation, subject to the assumptions which have been made, its use always leads to the construction of 
the IS. Here, localness is to be understood in the sense that a property being studied holds in a certain neighbourhood 
belonging to the domain in which system (1.1), (1.2) is considered• Situations may arise in a local treatment at a 
point (all the neighbourhoods being considered contain the initial point) when it is necessary to carry out preliminary 
procedures concerned with the resolution of singularities.t 

For the proof, we consider the first step and, for the functions (2.1) in the domain x0 x Do x U0 C T x  D x U, 
we find 

;~t, (si) . ( s t )~  
max rank ",:1 , '",yt , = k l 

~t ,x .u)E~ox~xoo ~(u  I . . . . .  u m)  

Then, by virtue of the assumption which we made regarding the differentiability of the functions being considered, 
a neighbourhood x~ x D~ x U] C_ x0 x Do x U0 exists in which the rank of the Jacobian matrix being considered is 
constant and equal to kl. ,according to the implicit function theorem, this ensures the existence and differenti- 
ability of the functions (2.2) and (2.3) for values t, x l  . . . . .  xn, y l  (sl) . . . . .  _y(~,O, ukl+1 . . . . .  Um which belong to a 
certain neighbourhood x01 x D01 x Y1 x U1, where the neighbourhood U1 is included in the projection of the 
neighbourhood Uo on the subspace of the variables Uk.+l . . . . .  Urn. Suppose that, when (t, x) ~ xl x D1 C (x*0 x 
D~) N (x01 x Din), the quantities yl (s0 . . . . .  y(ks. kO belor~lz to the neighbourhood Y1. Then, the functions ~; .,fl in 
formulae (2.3) and (2.4), which are treated as functions of the arguments t, x l  . . . . .  xn, Ukl+l . . . . .  Urn, will 

tThe referee drew my attention to the possibility of such situations occurring. 
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be differentiable a sufficient number of times in the neighbourhood I;1 × D1 x U1 and, for system (2.3), (2,4), it is 
possible in the second step to repeat the above arguments in the new domain xl x D1 x/-/1 with reduced dimension 
of the equation. These conclusions also hold when the subsequent steps are carried out, which ensures the existence 
of the IS (2.5)-(2.7). 

Remark 2. The definition of an IS introduced above and its use differ from that adopted in the literature [3--5], 
where an IS is defined under the assumption of the invertibility of the initial system and therefore has a special 
form and is used to represent the input signal in control problems when developing diverse computational 
procedures. In this paper, an IS is introduced for a system of general form and is used to investigate the property 
of the solvability of inverse control problems. 

Remark 3. The derivatives of the functions (2.3) can be calculated implicitly, by differentiating the output (1.2) 
a sufficient number of times. In this case, the corresponding derivatives y(O(t) will now depend on the derivatives 
of the input u(i)(t). Using these relations, it is possible to study the properties of an IS without its direct construction 
and to obtain the conditions for diverse inverse problems to be solvable, which is done in Section 5. 

3. F U N C T I O N A L  C O N T R O L L A B I L I T Y  AND I N V E R T I B I L I T Y  

The IS constructed above enables one to study the properties of functional controllability and 
invertibility. We shall adopt the following definition of functional controllability. 

Definition 1. System (1.1) is called a functionally controlled system with respect to the output (1.2) 
of smoothness s at the point x0 e D if, for any function y(t) ~ C ~ (Y) such that 

y"~(t 0) ¢ {h~(to,Xo,U(to)):u(t o) E U}, i = 0,1 ..... s 

a control u(t) ~ U can be found such thaty(t)  -- h(t, x(t, to, x0, u), u(t)). If certain neighbourhoods of 
zero and the point y(to) are taken as the domains U and Y and the function y(t) is defined in a small 
interval x0 C T of the point to, then one speaks of local functional controllability. 

Theorem 1. System (1.1) is a functionally controlled system with respect to the output (1.2) if and 
only if the output defect is equal to zero. The smoothness of the output is determined when constructing 
the IS. 

Proof. When the conditions of the theorem are satisfied, the IS has the form of (2.5), (2.7) and 
no constraints whatsoever are imposed on the output y(t), apart from the initial constraints: y(i)(to) 
{hi(to, Xo, U(to)):U(to) ei U} (i = 0, 1 . . . . .  So). System (2.7) corresponds to any specified function 

y(t) with permissible initial values and, by solving this system with the initial condition X(to) = Xo and 
any permissible control ~(t), we find £(t). Using formulae (2.5), the solution 2(t) determines the 
control 

fii(t) = ~Pi(t,~g(t),y(t) ... . .  y~S)(t),d(t)), i = 1 .....  k 

fij+t(t) =v-j(t), j = 1 ..... m - k  (3.1) 

By construction, the solution of system (1.1) with the initial condition x(to) = Xo, which corresponds to 
control (3.1), satisfies the relation y(t) = h(t, x(t, to, Xo, ~), ~(t)) which proves the sufficiency of the 
conditions of the theorem. 

We prove necessity by contradiction. Suppose that system (1.1) is a functionally controlled system 
and, contrary to the assertion of the theorem, the output defect is non-zero. At least one relation of 
the form of (2.6) then exists 

~l  (t, y ..... y<S) ) = 0 (3.2) 

which denotes the dependence of one of the components of the signal, yk(t), say, on the remaining 
components. It follows from this that, in the case of a functiony(t) which does not satisfy relation (3.2), 
the control u(t) which produces this signal does not exist, that is, system (1.1) is not a functionally 
controlled system, which contradicts the assumption and proves the theorem. 

We will now study the property of invertibility, adopting the following definition. 
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Definition 2. System (1.1) is said to be invertible with respect to the output (1.2) at a pointx0 ~ D if, 
for any two different permissible functions ul(t), u2(t), an instant t ~ T exists such that 

h(t ,x(t ,  to,Xo,Ut ),ul(t)) ;~ h(t,x(t ,  to,Xo,U2),u2(t)) 

If a certain neighbourhood of zero is taken as the domain U and the functions u(t),x(t),y(t) are defined 
in a small interval x e T of the point to, then one speaks of local invertibility. 

The following theorem provides a criterion for invertibility. 

Theorem 2. System (1.1) is invertible with respect to the output (1.2) at a point x0 e D if and only if 
the output defect is equal to × = k - m, the functions 9, defined by formula (2.5), are single-valued and 
system (2.7) satisfies the conditions for the existence and uniqueness of a solution of the Cauchy problem. 

Proof. To prove sufficiency we note that, when the conditions of the theorem are satisfied, the IS has 
the form 

2 = O( t , x , y  ..... y{S)) (3.3) 

u = cp(t,x,y ..... y{S)) (3.4) 

By virtue of the fact that the functions (3.4) are single-valued and the uniqueness of the solution of the 
Cauchy problem in the case of system (3.3), the mapping y(t) --¢ u(t) will be unique, will be unique, 
which implies the invertibility of system (1.1) with respect to the output (1.2). 

We prove necessity by contradiction. Suppose that, in spite of the assertion, x ,  k - m. Since, x I> 
k - m, then 13 -- × - k + m > 0 and the IS has the form of (2.5)-(2.7) where dim u = ~ > 0. For an 
arbitrary permissible output signal y(t) and two continuous functions ~l(t), ~2(t)(91(t) ~ ~2(t)), the 
solution of the Cauchy problem for system (2.7) together with formula (2.5) determines the functions 
Wl(t), w2(t). According to the construction of the IS, one and the same output y(t) corresponds to the 
input signals ul(t) = (wl(t), ~l(t)), u2(t) = (w2(t), ~2(t))(ul(t) ~ u2(t), by virtue of the choice of the 
functions ~l(t), ~2(t)), which implies that system (1.1) is not invertible. The resulting contradiction proves 
the theorem. 

We will now consider some examples which illustrate the use of the theorems proved above. 

Example 1. We will investigate the functional controllability and invertibility of the system 

"i:l = X2, J:2 = X3, "r3 = U2 (3.5) 

with respect tothe output 

Yl = Xl + Ul + u2 ,  Y2 = X2 + Ul + u2 (3.6) 

In the first step of the construction of the IS from Eqs (3.6) we find 

Ul = Yl -Xl - u2 (3.7) 

Y2 = x2 - xl + Yl (3.8) 

In the second step we consider system (3.5) with an input u2 and output (3.8) with a dimension which is one less 
compared with the initial dimensions. We have 

.~'2 = X3 -- X2 + .Yl, ~;2 = U2 -- X3 + J~l (3.9) 

From Eq. (3.7) and the second equation of (3.9), we obtain 

Ul = Y l  + y l - y 2 - x l - x 3 ,  U2----Y2-J;I  + x 3  (3.10) 

Substituting the expression for u2 into system (3.5), we have 

"rl = X 2 ,  "i:2 ----X3, J¢3 --Y2 --~;I +X3 (3.11) 

Equations (3.11) and (3.10) form the IS, for which x ffi 0 and the conditions of Theorems I and 2 are satisfied. 
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On this basis, we conclude that system (3.5) is a functionally controlled system and it is invertible with respect to 
the output (3.6). 

Examp/e 2. We will now consider the functional controllability and invertibility of system (3.5) with respect to 
the output 

Yl =Xl +Ul +u2, Y2 =x2 +u! +u 2, Y3 =x3 (3.12) 

This differs from the preceding example in the fact that the output is supplemented with a third component Y3, 
which we use in carrying out the first step. 

From the equation),3 --~ u2 and the second equation of (3.12), we find 

Ul = Y2 - Y3 - X2, U2 = )'3 (3.13) 

We now eliminate ul, ~2 from system (3.5) and the first equation of (3.12) using formulae (3.13) 

xl = x2, -r2 = x3, x3 = Y3 (3.14) 

Yl = Xl -X2  + Y2 (3.15) 

By virtue of system (3.14), differentiating expression (3.15) we obtain the equations 

Yl =X2 --X3 +Y2;  Yl =X3 - ) ' 3  +Y2 (3.16) 

which, together with the last relation of (3.12) and Eq. (3.15), we use to obtain the condition imposed on the output 
variable which does not contain the phase variable 

Yl - ~;2 - Y3 +Y3 = O ( 3 . 1 7 )  

Equations (3.14) and (3.13) form an IS for whichx = 1. Using Theorems 1 and 2, we conclude that system (3.6) 
is not a functionally controlled system but it is invertible with respect to the output (3.12). 

Remark 4. The equalities x = 0, x = k -  m can only be satisfied for k I> m. It follows from this that the inequality 
k ~> m is a necessary condition for functional controllability and invertibility, that is, the dimension of the output 
must not be less than the dimension of the input. 

4. I D E N T I F I A B I L I T Y  AND O B S E R V A B I L I T Y  W I T H  
R E S P E C T  TO S O M E  OF T H E  V A R I A B L E S  

A version of the problem of invertibility, when the initial state x0 = X(to) of system (1.1) is assumed 
to be unknown, is important in applications. In this case, the problem of  determining the initial signal 
is known as the problem of identification. The property of identifiability can be introduced in the 
following manner  [1, 2]. 

Definition 3. System (1.1) is said to be identifiable with respect to the output (1.2) in a domain D, if, 
for any two different permissible functions ul(t), Uz(t) and any solutionsxl(t) • Xul,x2(t) • Xu2, an instant 
of time t • T exists such that hq,  xl(t), ul(t)) ~ h(t, XE(t), u2(t)). Here,  Xui is the set of solutions of  system 
(1.1) for u = ui(t) and any initial values of x0 • D. 

The solution of the problem of identification, compared with the problem of invertibility, requires 
additional study due to the need to eliminate the phase variable x in formula (2.5). For this purpose, 
we shall analyse all the information which is obtained when constructing the IS. Together with relations 
(2.5) and (2.6), there are still the equations 

Vct(t ,x,y .... yft'~')) = O, ~ = 1  ..... v (4.1) 

which were used to eliminate the variable x in relations (2.6). It is obvious that, if the variable x can be 
eliminated from formultae (2.5) using functions (4.1), then, in the case of the invertibility of system (1.1), 
it will also be identifiable. It turns out that this condition is also necessary. 

Theorem 3. System (1.1) is identifiable with respect to the output (1.2) in the domain D if and only 
if the output defect is equal to × = k - m, system (2.7) satisfies the conditions for the existence and 
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uniqueness of the solution of the Cauchy problem and the functions (2.5) are single-valued and 
independent ofx. 

Proof. When the conditions of the theorems are satisfied, the system is invertible and, for a specified 
initial value of x0, the input signal is found uniquely using formulae (3.4), and since these formulae are 
independent of x, they also give the solution of the identification problem, which proves the sufficiency 
of the conditions of the theorem. 

To prove necessity, we note that, if the system is identifiable, then it is invertible and, when account 
is taken of Theorem 2, it remains to prove that functions (3.4) are independent of x. Arguing by 
contradiction, we assume that it is not possible to eliminate the variable x from functions (3.4) and that 
they do depend on x. We select the valuesxl0, x20 and the permissible signaly(t) in such a way that ul(to) 
= ~(t0, Xl0 , y(to) . . . . .  y(S)(to) ¢ 9(t0, X20 , y(to) , . . . ,  y(S)(to) ) = u2(t0). Then, the solutions xl ( t ) ,  x2(t ) of 
the Cauehy problem for system (3.3) withy(t) and the initial data xl0,x20 determine, in accordance with 
formulae (3.4), the two inputs Ul(t), u2(t) such that Us(t) ~ uE(t) and h(t,  Xl (t), u l ( t ) )  - h(t ,  x2(t), UE(t)) 
~-y(t). This implies the non-identifiability of system (1.1) and contradicts the initial assumption. The 
theorem is proved. 

We will use this theorem to study the property of the identifiability of system (3.5) in examples i and 2. In example 
1, there are two equations (3.8) and (3.9) which do not contain the input variable. It is not possible to eliminate 
the phase variable in formulae (3.10), which define the input signal using (3.8) and (3.9) which do not contain the 
input variable. It is not possible to eliminate the phase variable in formulae (3.10), which define the input signal 
using (3.8) and (3.9). Hence, by Theorem 3, system (3.5) is non-identifiable with respect to the output (3.6). In 
example 2, there are three equations (the last equation of (3.12), Eq. (3.15) and the first equation of (3.16)), which 
can be used to eliminate the phase variable from formulae (3.13) from which, by Theorem 3, the identifiability of 
system (3.5) with respect to the output (3.12) follows. 

Cases are encountered in identification problems when the structure of the input signal is known 
and, quite often, it is the solution of  the system of differential equations 

= g(t,  x,  u) (4.2) 

The problem of finding the variable u for system (1.1), (4.2) with respect to the output (1.2) when 
Xo = X(to) is unknown is an observation problem with respect to some of the variables. The property of 
observability with respect to some of the variables is introduced by the following definition [2]. 

Definition 4. System (1.1), (4.2) is said to be observable with respect to a variable u and the output 
(1.2) in domain D if, for any two solutions (xl(t), ul( t ) ) ,  (x2(t), u2(t)) such that ul ( t )  ~ u2(t), an instant 
t e T exists such that h(t ,  xl(t), ul(t)) ;~ h(t, x2(t), u2(t)). 

Theorem 3 obviously gives the necessary and sufficient conditions for observability with respect to 
some of the variables. However, the solution of this problem can be obtained by the direct use of an 
augmented observation vector, consisting of the output signal and its derivatives, without constructing 
the IS. This enables us to obtain quite simply the sufficient conditions for observability with respect to 
some of the variables in a local formulation using a theorem on implicit functions. 

5. S U F F I C I E N T  C O N D I T I O N S  

With the aim of obtaining the solution of inverse problems without constructing the IS, we introduce 
the augmented observation vector [1, 2] 

We use the notation 

yt°) ( t )  = ho( t , x ,u  ) = h ( t , x , u )  

• . t ) h i _  I t ) h  i 
y(O(t) = h i ( t , x ,u ,  fi . . . . .  u (0) = ----~-t + ~ x  f ( t , x , u ) +  

j~=O ~u (j) , i=  1 . . . . .  n (5.1) 
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H(t,x,u, v) = (h~ (t,x,u) ..... hrn ft, x,u, v)) r 

and rewrite Eq. (5.1) in the form 

z(t ) = H(t ,x ,u ,  v), v ~ U v ~ R ran (5.2) 

The choice of the domain Uv determines the class of permissible input signals in the inverse problems 
being considered. It follows from Theorems 2 and 3 that the uniqueness of the solution of the inverse 
problems is ensured by the existence of the functions u = 9(t ,x ,  z) or u = ~0(t, z), which are the solution 
of system (5.2). 

The following lemma [2] gives the sufficient conditions for the existence of a solution of such a form 
in the case of the system of algebraic equations 

z - F ( x , y ) = O ,  x ~ P ~ R  n, y e Q ~ R  k, z ~ E ~ R  t (5.3) 

Lemma 1. Suppose that the system of equations (5.3) is given in the domain P x Q x E,  F ~ CP(P x 
Q) and at a certain point (x0, Y0) e P x Q 

rank OF(x, y) = n + rank OF(x, y) (5.4) 
0(x,y) 0y 

Then, neighbourhoods Bx, By, Bz of the points x0, Y0, z0 = F(x0, Y0) and the function G ~ CP(Bz) 
exist such that the x coordinate of the solution (x, y) of system (5.3) is described by the formula 
x = G(z) .  

On applying Lemma 1 to system (5.2), we obtain the sufficient conditions for local invertibility, 
identifiability and observability with respect to some of the variables from condition (5.4) using Theorems 
2 and3. 

Theorem 4. Suppose that, at a certain point (to, x0, u0, v0) e T x D x U x Uv 

rank OH(t, x, u, v) = m + rank OH(t, x, u, v) 
0(u,v) 3v 

Then, system (1.1) is locally invertible (in the neighbourhood Bu of the point u0) with respect to the 
output (1.2) at the point x0. 

Theorem 5. Suppose that, at a certain point (to, x0, u0, v0) e T x D x U x Uv 

rank OH(t, x, u, v) 
b(x,u,v) 

= m + rank OH(t,x ,u,v)  
0(x,v) 

Then, system (1.1) i,; locally identifiable (in a certain neighbourhood Bx x B, of the point (x0, u0) with 
respect to the output (1.2). 

In a problem of observation with respect to some of the variables, when the input signal is the solution 
of the system of equations (4.2), it is necessary to replace formulae (5.1) and (5.2), which introduce 
the augmented observation vector, by the following formulae 

y(O) (t) = h o (t, x, u) = h(t, x, u) 

Ohi_  ! O h i -  I . Oh i_  I . 
y¢i)(o = hn(t,x,u) = --~--t + - ~ x  f ( t , x ,u )+-~-u  g(t ,x ,u) ,  i = 1 ..... n (5.5) 

z(t) = H(t, x, u) (5.6) 

The following theorem give the sufficient conditions for local observability with respect to some of 
the variables. 
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Theorem 6. Suppose that, at a certain point (to, x0, u0) e T x D x U 

rank OH(t, x,  u) = m + rank OH(t, x,  u) 
O(x ,u)  Ox 

Then, system (1.2), (4.2) is locally observable (in a certain neighbourhood B, of the point u0) with 
respect to the variable u and the output (1.2). 

6. THE USE OF SETS OF T R A JE C T O R IE S  

The formulation of identification and invertibility problems enables certain trajectories to be used 
which, in fact, is implemented in practical problems mainly with the aim of carrying out statistical data 
processing. However, such a generalization of these problems is also of theoretical significance since 
it extends the class of systems which possess the properties of identifiability and invertibility. Following 
[1, 2], we now present the corresponding definitions. 

Defini t ion 5. System (1.1) is said to be ~,-invertible (invertible along ~,-trajectories) with respect to 
the output (1.2) at a point (x01 . . . . .  x0~) e D x if, for any two different permissible functions ul( t ) ,  u2(t), 
an instant t ~ T exists such that 

( h r ( t , x ( t ,  to,Xol,Ul), u l ( t ) )  . . . . .  h r ( t , x ( t ,  to,Xo~,Ul), ut(t)))~ 

~(hr(t,x(t, to,Xol,u2), u2(t)) . . . . .  hr(t,x(t, to,Xox,U2), u 2 ( t ) ) )  

Defini t ion 6. System (1.1) is said to be ~,-identifiable (identifiable along ~,-trajectories) with respect 
to the output (1.2) in domain D if, for any two different permissible functions ul( t) ,  u2(t) and any solutions 
Xll(t) . . . . .  Xlk(t)  E Xu l  , x21(t ) . . . . .  x2~.(t ) E Xu2, an instant t ~ T exists such that 

(h r ( t ,  x l l ( t ) ,  u l ( t ) )  . . . . .  h r ( t ,  xi~.(t), U l ( t ) ) ) # ( h r ( t ,  x21(t), u2(t)) ..... hr ( t ,  x2~.(t), u2(t))) 

It is obvious that, if the system is invertible and identifiable, then it is L-invertible and ~,-identifiable 
respectively for any L. It is therefore natural to study the properties of L-invertibility and k-identifiability 
in the case of non-invertible and non-identifiable system (along a single trajectory). 

An investigation using an IS can be carried out by two methods. The first method consists of using 
the IS (2.5)-(2.7), constructed along a single trajectory. By Theorems 2 and 3, we conclude that, for 
the case being considered, the function q~ in formula (2.5) contains the vector ~ and, for its unique 
solvability, it is necessary and sufficient to be able to determine the vector ~ from the relations 

w=tp(t, x i, Yi, Yi ..... y~S), v), i=1 ..... ~, (6.1) 

In order to find ~ from relations (6.1), we obtain the equivalent system 

~s) 0), (6.2) ~o(i ) = cp(t, xi+ I, Yi+l . . . . .  Yi+l, u ) -  ~( t ,  x I , Yl . . . . .  Yl v ) = O, i = I . . . . .  ~, - 1 

Subject to the condition for the unique solvability of system (6.2) for a) from Eqs (6.1), the vector w 
is uniquely found and, together with the value of ~ obtained, uniquely defines the input signal u = 
(w, u), which implies the ;~,-invertibility of system (1.1) with respect to the output (1.2). 

The result obtained can be formulated in the form of a theorem. 

Theorem 7. System (1.1) is 7~-invertible with respect to the output (1.2) if and only if it is invertible, 
or system (2.7) satisfies the conditions for the existence and uniqueness of the solution of the Cauchy 
problem, the function (2.5) is single-valued and the system of equations (6.3) is uniquely solvable for 
the vector ~. 

In order to analyse the property of ~,-identifiability, it is necessary to use Eqs (4.1) which relate the 
phase variable and the output signal in the trajectories being considered 

Wa(t ,  xi ,  Yi . . . . .  y~P'~))=0, ot=l  ..... v; i=1 ..... ~, (6.3) 
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If system (6.2) is uniquely solvable for ~ and Eqs (6.2) and (6.3) enable one to eliminate the variables 
xi from the formulae for w and a), by obtaining them in the form 

w = w(t ,  yj . . . . .  Yx . . . . .  y(xq)), u =o (t, Yl ..... Y~. ..... Y[q)) (6.4) 

then, on repeating the proof of Theorem 3, we obtain that system (1.1) is L-identifiable with respect 
to the output (1.2). 

Theorem 8. System (1.1) is L-identifiable, or system (2.7) satisfies the conditions for the existence and 
uniqueness of a solution of the Cauchy problem, the function (2.5) is single-valued and the system of 
equations (6.2) and (6.3), together with formula (2.5), determine the vectors w and ~ in a unique manner 
in the form of (6.4). 

The second method involves constructing the inverse system for a system with the phase vector 
X~ = (Xrl, . . . .  x ~ ) r e  D x, the output signal Yz = (y~ . . . . .  y~) r  and the initial input signal 

k i = f ( t ,  x i, u), i = l  . . . . .  L (6.5) 

Yi  = h(t, x i, u), i = 1 ..... L (6.6) 

Repeating the argu:rnents from Section 2, we construct the IS for system (6.5) with the output (6.6). 
On applying Theorerns 2 and 3 to it, we obtain the criteria for L-invertibility and L-identifiability. We 
obtain the sufficient conditions for L-invertibility and L-identifiability from Theorems 4 and 5. 

Theorem 9. Suppose that, at a certain point of the domain T x D x x U x Uv 

rank O(H(t ,  x I , u, v) ..... H(t ,  x z ,  u, v)) 
0(u,v) 

= m + rank 3( H(t ,  x t , u, v) ..... H(t, x;~, u, v)) 
0v 

System (1.1) is then locally L-invertible with respect to the output (1.2) at this point. 

Theorem 10. Suppo:~e that, at a certain point of the domain T x D x x U x Uv 

rank 0( H0', x I , u, v) ..... H(t ,  x~,  u, v) )  = m + rank 
O(xl . . . . .  x ~ , u , v )  

O( H(t ,  x l ,u ,  v) ..... H(t ,  x~ ,u, v)) 

0(x I ..... x~, v) 

System (1.1) is then locally L-identifiable with respect to the output (1.2). 
Similar results hold in the case of the problem of identifying an input signal of known structure. For 

instance, Theorem 10, in the formulation of which the vector v does not occur and the function 
H(t ,  x, u )  is defined by formulae (5.5) and (5.6), give the sufficient conditions for local L-identifiability. 
By analysing the problem of identification using a set of trajectories in the case of constant parameters 
u = const, it is possible to find two numbers [2] 

~'min =[(m--1)~-I]  +1, Lmax = m + l - o t  

= rank OH( t , x , u )  _ rank OH( t , x , u )  
O(x ,u)  Ox 

where [.] is the largesl: integer function and the function H(t ,  x, u )  is calculated using formulae (5.5) 
and (5.6), in which it is necessary to putg  = 0. The following property is established using them: system 
(1.1) cannot be identifiable with respect to L < Lmi n trajectories; if system (1.1) is non-identifiable with 
respect to ~ < Lmax trajectories, then it is non-identifiable with respect to any number of trajectories. 

Example 3. We now consider the system 

J¢l =x2,  Jc2 =X3Ul +u2, Jc3 =U2 (6.7) 

with the output 
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Yl = Xl, Y2 = x2 (6.8) 

In order to construct the IS, we calculate 

Yl = x2, Y2 = X3Ul + u2 (6.9) 

From formulae (6.8) and (6.9), we find the dependence of the input signal on the output signal and the relation 
for the output signal and the IS 

w = 92 - x3v ,  u = ( v ,  w )  (6.10) 

Yl = Y2 (6.11) 

JCl = X 2 ,  Jc2 = Y2, J¢3 = Y2 - x3u (6.12) 

The existence of relation (6.11) shows that the defect × of system (6.7) is equal to unity and the condition x = k 
- r n  of Theorem 2 is therefore not satisfied and system (6.7) is not invertible, and this means that it is not identifiable 
with respect to the output (6.8). 

In order to investigate X-invertibility, we write down Eq. (6.2) for )~ = 2: tp(1) = Y22 -x32u -Y21 + x31~ = 0 which 
is uniquely solvable for a) when x32 # x31. We conclude on the basis of Theorem 7 that system (6.7) is ~,-invertible 
with respect to the output (6.8) in the case when X ~> 2. In order to study ;L-identifiability we consider Eqs (6.3) 
which, in the given case, are identical to Eqs (6.8). These equations do not enable one to eliminate the variables 
x~ from the expression for a) for any X which indicates that the conditions of Theorem 8 are not satisfied and implies 
the non-identifiability of system (6.7) with respect to the output (6.8) for any number of trajectories. 

We will now verify that the sufficient conditions for ;~,-invertibility and X-identifiability are satisfied. From Eqs 
(6.9), we find 

det ~(921, 922) 
O(ul, u2) =x3t  -x32  ~:0 when  x31 ~:x32 

The conditions of Theorem 9 are therefore satisfied fo r  H(yl,Y2,))l , .~2), ~, = 2 and system (6.7) is locally X-invertible 
for X t> 2. By writing out formulae (5.1) and (5.2) for the extended observation vector, it can be shown that, for 
any ~. 

rank ~(H(Xl ,u,v) ..... H ( x  x , u , v ) )  = rank/9(H(Xl ,u,v) ..... H ( x x , u , v ) )  

~(x I ..... x~,,u,v) ig(x t ..... x~,v) 

which is taken to mean that the sufficient conditions for ;~,-identifiability are not satisfied for any X. 

E x a m p l e  4. Consider the system 

Xl = X2, X2 = X3, X3 = XlUl +U2 (6.13) 

with the output 

y = xl (6.14) 

The IS has the form 

w=~-xlu, u=(u, w). k l=x 2, :~2=x3, ~3=~ (6.15) 

The conditions of Theorem 2 are not satisfied, and system (6.13) is not invertible and non-identifiable with respect 
to the output (6.14). Note that this conclusion follows from the fact that the dimension of the output signal is smaller 
than the dimension of the input signal and there is no need to construct the IS (6.15) to analyse the invertibility. 
However, it is possible to investigate X-invertibility and ~.-identifiability using the IS. It follows from the first formula 
of (6.15) that, for X = 2, the vector ~ is uniquely determined from the equation 90) = 0 and, by Theorem 7, system 
(6.13) is X-invertible with respect to the output (6.14) for X I> 2. In order to investigate ~,-identifiability, we write 
out Eqs (6.3): Yi = Xu, Yi = x2/, J:i = x~ (i = I ..... ~.), which are uniquely solvable for the phase variables xi and 
enable one to eliminate them from the expressions for the vectors I) and w. It follows from Theorem 8 that system 
(6.13) is X-identifiable with respect to the output (6.14) for )~ ~> 2. By calculating the augmented observation vector 
using formulae (5.1) and (5.2), it can be shown that the sufficient conditions of Theorems 9 and 10 are satisfied 
for k ~> 2. 

The examples considered show that, in the case of non-linear systems, the use of a set of trajectories actually 
extends the possibilities for recovering the input signal, enabling one, in a number of cases, to solve a problem 
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even when the output signal is of  a lower dimension than that of the input, which is impossible in principle when 
a single trajectory is used. In the case of  linear systems ~ = A(t)x + B(t)u and linear output signalsy ffi C(t)x + 
D(t)u the use of  a set of trajectories does not offer any advantages since the IS 

ic = Ao(t)x + Bo(t)v +Qo(t)z; w = Eo(t)x + Fo(t)Z +Go(t)u , Ro(t)z = 0 

depends linearly on the 'vector ~, and Eqs (6.2) are therefore independent of ~, which means that the vector 
cannot be determined from them and it therefore does not lead to ~,-invertibility. 
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